Alloy Development

Having trouble finding an alloy with the right combination of properties for your application? Or maybe a conventional alloy suits your needs, but is not yet additively manufacturable. Trail-and-error alloy development is expensive and time consuming, which introduces a design constraint in most cases. At MRL, we have developed a model-based method for multi-component alloy development by pairing ICME property predictions with machine learning methods for fast prediction of optimized alloy compositions. Our facilities provide capability for full-scale validation of the alloy properties, including small batch powder atomization, laser and electron beam powder bed fusion, high-throughput microstructure characterization and mechanical testing, and flammability and corrosion testing – we have you covered from atom to application.


How We Do It

The MRL alloy development approach comprises a collection of physics-based models for predicting phase evolution, namely density functional theory (VASP), molecular dynamics (LAMMPS), self-consistent field method (SCF), phase field dislocation dynamics, and CALPHAD calculations. Modeling results are supplemented by data from alloy combinatorial libraries and high-throughput experimental testing and analysis. This includes mechanical testing as well as chemical property studies of oxide/corrosion formation during high-temperature exposure. MRL’s high-throughput experimental tools, when integrated with iCAAM databases and Bayesian neural network, enable a large potential design space to be explored quickly and in a non-linear style, based upon design goals.

Inquiry
Manufacturing

Manufacturing

Form, Fit, and Function.
MRL's model-optimized additive manufacturing methodology can produce high-quality parts from a wide range of metallic materials including Al, Ti, Fe, Ni, Mg, CoCr, and high entropy alloys using Electron or Laser Powder Bed Fusion or Wire Arc Additive Manufacturing.

Read More
Machining

Machining

One-stop Precision Machine Shop.
MRL can support all of your CNC, wire EDM, sawing, grinding, turning, and surface finishing needs to produce everything from small samples to finished components.

Read More
Material Characterization

Material Characterization

Full microstructure characterization.
We are equipped to measure and analyze your microstructure using optical light microscopy or SEM/EBSD.

Read More
Mechanical Testing

Mechanical Testing

Coupon and component testing.
MRL’s high-throughput multi-sample tension and fatigue test capability gets you results faster, at lower cost, without sacrificing quality. MRL can also perform static, quasi-static, cyclic, and dynamic tests on conventional sample geometries -- or design and fabricate custom test fixtures for sub- or component testing.

Read More
Surface Finishing

Surface Finishing

Controlled Surface Finish.
Surface roughness has a large impact on a material's fatigue performance, corrosion pitting potential, and inspectability. Using MRL's trade-secret electro-chemo-mechanical polishing process, we can create a smooth, mirror-like finish on anything from samples to complex components.

Read More
Nondestructive Evaluation

Nondestructive Evaluation

Material State Awareness.
MRL's long history and expertise with materials processing, microstructure characterization, crystallographic anisotropy, and data-science gives us a huge advantage in the interpretation of in-situ and ex-situ NDE data. Using Microstructure-informed NDE, we can help you obtain more information than you ever thought possible without ever cutting your part.

Read More
Material Characterization

Material Characterization

Micro, Meso, and Macro.
Whether you already know what you're looking for or are just beginning to explore the impact of microstructure on the quality of your products, MRL can assist you in all aspects of quantitative metallography and texture analysis including design of experiments, sample preparation, data collection, interpretation, statistical analysis, and reporting.

Read More
Forensic Metallurgy

Forensic Metallurgy

Sometimes things break.
There's a plethora of information present on any given fracture surface -- it helps to have MRL's expertise in materials, manufacturing, characterization, and fatigue and fracture expertise to extract it and use it to identify the root cause and make corrective actions.

Read More
Modeling and Simulation

Modeling and Simulation

Design. Analyze. Optimize.
Whether you need continuum finite element simulations or want to explore micromechanical effects using fully coupled crystal plasticity, MRL's Modeling & Simulation eam can help you through all aspects of a product's life cycle including development, design optimization, manufacturing (forging, heat treatment), and failure analysis.

Read More
Performance Prediction

Performance Prediction

From monotonic to cyclic.
MRL is committed to model-based, sensor-assisted qualification of low-volume production parts so we've developed a suite of physics-based performance-prediction tools to predict many design-relevant factors including strength and fatigue. Through transfer of learning we can quickly adapt these models to solve your most challenging problems.

Read More